论文标题

可解释功能数据的多类异常检测

Explainable multi-class anomaly detection on functional data

论文作者

Cura, Mathieu, Firdova, Katarina, Labart, Céline, Martel, Arthur

论文摘要

在本文中,我们描述了一种异常检测方法及其在多元功能数据中的解释性。异常检测过程包括将系列转换为特征向量并使用隔离森林算法。可解释的过程基于外形系数的计算和使用监督决策树的使用。我们将其应用于模拟数据,以衡量我们的方法的性能以及来自行业的真实数据。

In this paper we describe an approach for anomaly detection and its explainability in multivariate functional data. The anomaly detection procedure consists of transforming the series into a vector of features and using an Isolation forest algorithm. The explainable procedure is based on the computation of the SHAP coefficients and on the use of a supervised decision tree. We apply it on simulated data to measure the performance of our method and on real data coming from industry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源