论文标题

最佳解决基于RKHS的非参数回归中的协变量转移

Optimally tackling covariate shift in RKHS-based nonparametric regression

论文作者

Ma, Cong, Pathak, Reese, Wainwright, Martin J.

论文摘要

我们研究了繁殖核希尔伯特空间(RKHS)的非参数回归背景下的协变性转移问题。我们专注于使用源和目标分布之间的似然比定义的两个自然家庭。当可能性比均匀界限时,我们证明具有精心选择的正则化参数的内核脊回归(KRR)估计量是最小速率 - 最佳速率(最高为log factor),其中包括常规内核特征值的RKHS家族。有趣的是,KRR不需要对可能性比的完全了解,除了上限上。在与没有协变量转移的标准统计设置形成鲜明对比的情况下,我们还证明,与KRR相比,在协变量下,幼稚的估计量最大程度地减少了功能类别的经验风险。然后,我们解决了较大类的协变量转移问题,在这些问题中可能是无限的,但第二时刻有限。在这里,我们提出了一个重新加权的KRR估计器,该估计值根据可能性比率的仔细截断来加权样品。同样,我们能够证明该估计值是最小速率最佳的,直到对数因素。

We study the covariate shift problem in the context of nonparametric regression over a reproducing kernel Hilbert space (RKHS). We focus on two natural families of covariate shift problems defined using the likelihood ratios between the source and target distributions. When the likelihood ratios are uniformly bounded, we prove that the kernel ridge regression (KRR) estimator with a carefully chosen regularization parameter is minimax rate-optimal (up to a log factor) for a large family of RKHSs with regular kernel eigenvalues. Interestingly, KRR does not require full knowledge of likelihood ratios apart from an upper bound on them. In striking contrast to the standard statistical setting without covariate shift, we also demonstrate that a naive estimator, which minimizes the empirical risk over the function class, is strictly sub-optimal under covariate shift as compared to KRR. We then address the larger class of covariate shift problems where the likelihood ratio is possibly unbounded yet has a finite second moment. Here, we propose a reweighted KRR estimator that weights samples based on a careful truncation of the likelihood ratios. Again, we are able to show that this estimator is minimax rate-optimal, up to logarithmic factors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源