论文标题

在平面bimatrix游戏上,计算统一的纳什均衡的NP硬度

NP-hardness of Computing Uniform Nash Equilibria on Planar Bimatrix Games

论文作者

Ishizuka, Takashi, Kamiyama, Naoyuki

论文摘要

我们研究了在非获胜的bimatrix游戏上计算均匀NASH平衡的复杂性。众所周知,即使Bimatrix游戏是Win-lose(Bonifaci et al。,2008),这种问题也是NP完整的。幸运的是,如果获胜的bimatrix游戏是平面的,那么统一的纳什均衡总是存在。我们有一种多项式时间算法,用于找到平面赢得bimatrix游戏的均匀NASH平衡(Addario-Berry等,2007)。剩下以下问题:在平面非获胜的bimatrix游戏上计算统一的纳什均衡程度有多难?本文解决了这个问题。我们证明,确定非获胜的平面bimatrix游戏是否具有均匀的NASH平衡的问题也是NP完整的。

We study the complexity of computing a uniform Nash equilibrium on a non-win-lose bimatrix game. It is known that such a problem is NP-complete even if a bimatrix game is win-lose (Bonifaci et al., 2008). Fortunately, if a win-lose bimatrix game is planar, then uniform Nash equilibria always exist. We have a polynomial-time algorithm for finding a uniform Nash equilibrium of a planar win-lose bimatrix game (Addario-Berry et al., 2007). The following question is left: How hard to compute a uniform Nash equilibrium on a planar non-win-lose bimatrix game? This paper resolves this issue. We prove that the problem of deciding whether a non-win-lose planar bimatrix game has uniform Nash equilibrium is also NP-complete.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源