论文标题
在社交媒体中发现疫苗态度检测的立场和方面主题的学习和方面主题
Disentangled Learning of Stance and Aspect Topics for Vaccine Attitude Detection in Social Media
论文作者
论文摘要
建立模型以检测社交媒体上的疫苗态度是一项挑战,因为涉及的复合材料(通常涉及复杂的方面)以及带注释的数据的可用性有限。现有方法在很大程度上依赖于需要大量注释和预定义方面类别的监督培训。取而代之的是,为了利用现在可用于疫苗接种的大量未注释的数据,我们提出了一种新型的半监督方法,用于疫苗态度检测,称为vadet。基于语言模型的变异自动编码体系结构用于从未标记的数据中学习域的主题信息。然后,该模型通过一些手动注释的用户态度示例进行了微调。我们验证了VADET对带注释的数据的有效性以及对疫苗意见注释的现有疫苗接种语料库。我们的结果表明,Vadet能够学习分离的立场和方面主题,并且在立场检测和推文聚类上都优于现有的基于方面的情感分析模型。
Building models to detect vaccine attitudes on social media is challenging because of the composite, often intricate aspects involved, and the limited availability of annotated data. Existing approaches have relied heavily on supervised training that requires abundant annotations and pre-defined aspect categories. Instead, with the aim of leveraging the large amount of unannotated data now available on vaccination, we propose a novel semi-supervised approach for vaccine attitude detection, called VADet. A variational autoencoding architecture based on language models is employed to learn from unlabelled data the topical information of the domain. Then, the model is fine-tuned with a few manually annotated examples of user attitudes. We validate the effectiveness of VADet on our annotated data and also on an existing vaccination corpus annotated with opinions on vaccines. Our results show that VADet is able to learn disentangled stance and aspect topics, and outperforms existing aspect-based sentiment analysis models on both stance detection and tweet clustering.