论文标题

链接的随机曲折模型

Random meander model for links

论文作者

Owad, Nicholas, Tsvietkova, Anastasiia

论文摘要

我们为基于曲折图和图形的链接建议了一个新的随机模型。然后,我们证明在此模型中以消失的概率出现琐碎的链接,没有概率1获得链接$ l $,并且对于固定数量的交叉点获得的非异位结的数量,有一个下限。通过匹配的括号对获得一个随机的曲折图,这是组合学中的一个充分研究的问题。因此,组合学的工具可用于研究该模型中随机链接的属性,此外,相应的3个manifolds是3次链接补充。我们将其用于探索链接补充的几何特性。具体而言,我们给出了链接图的预期扭曲数量,并将其用于绑定的预期双曲线和简单的随机链接。我们使用的Compinatorics的工具包括加泰罗尼亚和Narayana数字,以及Zeilberger的算法。

We suggest a new random model for links based on meander diagrams and graphs. We then prove that trivial links appear with vanishing probability in this model, no link $L$ is obtained with probability 1, and there is a lower bound for the number of non-isotopic knots obtained for a fixed number of crossings. A random meander diagram is obtained through matching pairs of parentheses, a well-studied problem in combinatorics. Hence tools from combinatorics can be used to investigate properties of random links in this model, and, moreover, of the respective 3-manifolds that are link complements in 3-sphere. We use this for exploring geometric properties of a link complement. Specifically, we give expected twist number of a link diagram and use it to bound expected hyperbolic and simplicial volume of random links. The tools from combinatorics that we use include Catalan and Narayana numbers, and Zeilberger's algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源