论文标题
吸引我购买:通过多模式多结构信息的广告文案写作
Attract me to Buy: Advertisement Copywriting Generation with Multimodal Multi-structured Information
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Recently, online shopping has gradually become a common way of shopping for people all over the world. Wonderful merchandise advertisements often attract more people to buy. These advertisements properly integrate multimodal multi-structured information of commodities, such as visual spatial information and fine-grained structure information. However, traditional multimodal text generation focuses on the conventional description of what existed and happened, which does not match the requirement of advertisement copywriting in the real world. Because advertisement copywriting has a vivid language style and higher requirements of faithfulness. Unfortunately, there is a lack of reusable evaluation frameworks and a scarcity of datasets. Therefore, we present a dataset, E-MMAD (e-commercial multimodal multi-structured advertisement copywriting), which requires, and supports much more detailed information in text generation. Noticeably, it is one of the largest video captioning datasets in this field. Accordingly, we propose a baseline method and faithfulness evaluation metric on the strength of structured information reasoning to solve the demand in reality on this dataset. It surpasses the previous methods by a large margin on all metrics. The dataset and method are coming soon on \url{https://e-mmad.github.io/e-mmad.net/index.html}.