论文标题
时间序列域通过稀疏的关联结构对准适应:学习不变性和差异
Time-Series Domain Adaptation via Sparse Associative Structure Alignment: Learning Invariance and Variance
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Domain adaptation on time-series data is often encountered in the industry but received limited attention in academia. Most of the existing domain adaptation methods for time-series data borrow the ideas from the existing methods for non-time series data to extract the domain-invariant representation. However, two peculiar difficulties to time-series data have not been solved. 1) It is not a trivial task to model the domain-invariant and complex dependence among different timestamps. 2) The domain-variant information is important but how to leverage them is almost underexploited. Fortunately, the stableness of causal structures among different domains inspires us to explore the structures behind the time-series data. Based on this inspiration, we investigate the domain-invariant unweighted sparse associative structures and the domain-variant strengths of the structures. To achieve this, we propose Sparse Associative structure alignment by learning Invariance and Variance (SASA-IV in short), a model that simultaneously aligns the invariant unweighted spare associative structures and considers the variant information for time-series unsupervised domain adaptation. Technologically, we extract the domain-invariant unweighted sparse associative structures with a unidirectional alignment restriction and embed the domain-variant strengths via a well-designed autoregressive module. Experimental results not only testify that our model yields state-of-the-art performance on three real-world datasets but also provide some insightful discoveries on knowledge transfer.