论文标题
部分可观测时空混沌系统的无模型预测
Multi-Target Active Object Tracking with Monte Carlo Tree Search and Target Motion Modeling
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this work, we are dedicated to multi-target active object tracking (AOT), where there are multiple targets as well as multiple cameras in the environment. The goal is maximize the overall target coverage of all cameras. Previous work makes a strong assumption that each camera is fixed in a location and only allowed to rotate, which limits its application. In this work, we relax the setting by allowing all cameras to both move along the boundary lines and rotate. In our setting, the action space becomes much larger, which leads to much higher computational complexity to identify the optimal action. To this end, we propose to leverage the action selection from multi-agent reinforcement learning (MARL) network to prune the search tree of Monte Carlo Tree Search (MCTS) method, so as to find the optimal action more efficiently. Besides, we model the motion of the targets to predict the future position of the targets, which makes a better estimation of the future environment state in the MCTS process. We establish a multi-target 2D environment to simulate the sports games, and experimental results demonstrate that our method can effectively improve the target coverage.