论文标题

标签骨骼级别至像素级可调式容器分割的对抗性学习

Label Adversarial Learning for Skeleton-level to Pixel-level Adjustable Vessel Segmentation

论文作者

Li, Mingchao, Huang, Kun, Zhang, Zetian, Ma, Xiao, Chen, Qiang

论文摘要

您也可以吃蛋糕,也可以吃。光学相干断层扫描(OCTA)图像中微血管分割仍然具有挑战性。骨架级分割显示清晰的拓扑结构,但没有直径信息,而像素级分段显示清晰的口径但低拓扑。为了缩小这一差距,我们提出了一种新型的标签对抗学习(LAL),用于骨架级至像素级可调节的容器分割。 LAL主要由两个设计组成:标签对抗损失和一个可嵌入的调整层。标签对抗性损失在两个标签监督之间建立了对抗关系,而调整层则调整网络参数以匹配不同的对手权重。这样的设计可以有效地捕获两个监督之间的变化,从而使分割连续且可调。这种连续的过程使我们能够推荐具有清晰口径和拓扑的高质量血管分割。实验结果表明,我们的结果优于当前公共数据集和常规过滤效果的手动注释。此外,这种连续过程也可以用于产生代表弱容器边界和噪声的不确定性图。

You can have your cake and eat it too. Microvessel segmentation in optical coherence tomography angiography (OCTA) images remains challenging. Skeleton-level segmentation shows clear topology but without diameter information, while pixel-level segmentation shows a clear caliber but low topology. To close this gap, we propose a novel label adversarial learning (LAL) for skeleton-level to pixel-level adjustable vessel segmentation. LAL mainly consists of two designs: a label adversarial loss and an embeddable adjustment layer. The label adversarial loss establishes an adversarial relationship between the two label supervisions, while the adjustment layer adjusts the network parameters to match the different adversarial weights. Such a design can efficiently capture the variation between the two supervisions, making the segmentation continuous and tunable. This continuous process allows us to recommend high-quality vessel segmentation with clear caliber and topology. Experimental results show that our results outperform manual annotations of current public datasets and conventional filtering effects. Furthermore, such a continuous process can also be used to generate an uncertainty map representing weak vessel boundaries and noise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源