论文标题
两个积极谐波功能的一个阶段问题:下方的编成$ 1 $阈值
One phase problem for two positive harmonic function: below the codimension $1$ threshold
论文作者
论文摘要
关于$ \ br^n $的域$ \ om $,其Green函数$ g(z)$满足$ g(z)\ asymp \ dist(z,\ pd \ om)^δ$的范围可以说什么?如果边界harnack原理以$ u/v = \ text {real Analytic} $在其边界的零件$ e $上以$ u/v = \ text {real Analytic} $形式持有,我们该怎么说?这里$ u,v $是$ \ o $ $ e $上消失的积极谐波功能。边界的这一部分也不错吗? 我们在下面讨论这些问题,并在非常特殊的情况下给出答案。
What can be said about the domain $\Om$ in $\bR^n$ for which its Green's function $G(z)$ satisfies $G(z)\asymp \dist (z, \pd\Om)^δ$? What can we say about $\Om$ if the Boundary Harnack Principle holds in the form $u/v=\text{real analytic}$ on the part $E$ of its boundary? Here $u, v$ are positive harmonic functions on $\Om$ vanishing on $E$. Is this part of the boundary also nice? We discuss these questions below and give answers in very special cases.