论文标题
在机器人操纵器的配置空间中查找和优化经认证的,无碰撞的区域
Finding and Optimizing Certified, Collision-Free Regions in Configuration Space for Robot Manipulators
论文作者
论文摘要
配置空间(C空间)在无碰撞运动计划中发挥了核心作用,尤其是对于机器人操纵器。虽然可以使用标准算法在某个点检查碰撞,但由于通过运动学绘制任务空间障碍的复杂性,迄今为止尚无实用方法用于计算具有严格证书的无碰撞C空间区域。在这项工作中,我们向我们的知识方法介绍了通过凸优化生成此类区域和证书的知识方法。我们的方法称为c-iris(通过半限定编程的C空间迭代区域通货膨胀),在配置空间的合理参数化中生成大型的凸多型,保证无碰撞。此类区域已被证明可用于基于优化的和随机运动计划。我们的区域是通过在两个凸优化问题之间交替而产生的:(1)同时搜索给定多层的最大体积椭圆形和一张证书,该证书是无碰撞的,以及(2)最大值的远离椭圆机的扩张,该椭圆形不会使证书违反证书。椭圆形的体积和多层的大小可以在几个迭代中生长,同时通过结构无碰撞。我们的方法在任意维度上起作用,仅对任务空间中障碍的凸度进行假设,并缩放到操纵中的现实问题。我们证明了算法在一个3-DOF的示例中填充非平凡量的无碰撞C空间的能力,在该示例中,可以可视化C空间,以及在7-DOF KUKA IIWA上的算法的可伸缩性和一个12-DOF BIMANAUMAULALAUALALAUALALAUMAULALAUMAULALALAUAL机构上的可伸缩性。
Configuration space (C-space) has played a central role in collision-free motion planning, particularly for robot manipulators. While it is possible to check for collisions at a point using standard algorithms, to date no practical method exists for computing collision-free C-space regions with rigorous certificates due to the complexities of mapping task-space obstacles through the kinematics. In this work, we present the first to our knowledge method for generating such regions and certificates through convex optimization. Our method, called C-Iris (C-space Iterative Regional Inflation by Semidefinite programming), generates large, convex polytopes in a rational parametrization of the configuration space which are guaranteed to be collision-free. Such regions have been shown to be useful for both optimization-based and randomized motion planning. Our regions are generated by alternating between two convex optimization problems: (1) a simultaneous search for a maximal-volume ellipse inscribed in a given polytope and a certificate that the polytope is collision-free and (2) a maximal expansion of the polytope away from the ellipse which does not violate the certificate. The volume of the ellipse and size of the polytope are allowed to grow over several iterations while being collision-free by construction. Our method works in arbitrary dimensions, only makes assumptions about the convexity of the obstacles in the task space, and scales to realistic problems in manipulation. We demonstrate our algorithm's ability to fill a non-trivial amount of collision-free C-space in a 3-DOF example where the C-space can be visualized, as well as the scalability of our algorithm on a 7-DOF KUKA iiwa and a 12-DOF bimanual manipulator.