论文标题

基于SSIM变化的复杂性优化用于多功能视频编码

SSIM-Variation-Based Complexity Optimization for Versatile Video Coding

论文作者

Lin, Jielian, Lin, Hongbin, Zhang, Zhichen, Xu, Yiwen, Zhao, Tiesong

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

To date, Versatile Video Coding (VVC) has a more magnificent overall performance than High Efficiency Video Coding (HEVC). The Quadtree with Nested Multi-Type Tree (QTMT) coding block structure can substantially enhance video coding quality in VVC. However, the coding gain also leads to a greater coding complexity. Therefore, this letter proposes a Fast Decision Scheme Based on Structural Similarity Index Metric Variation (FDS-SSIMV) to solve this problem. Firstly, the Structural Similarity Index Metric Variation (SSIMV) characteristic among the sub coding units of the spit mode is illustrated. Next, to evaluate the SSIMV value, SSIMV measure strategies are designed for different split modes in this letter. Then, the desired split modes are selected by the SSIMV values. Experimental results show that the proposed method achieves 64.74\% average encoding Time Saving (TS) with a 2.79\% Bj$\varnothing$ntegaard Delta Bit Rate (BDBR), outperforming the benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源