论文标题

部分可观测时空混沌系统的无模型预测

Fingerprint Template Invertibility: Minutiae vs. Deep Templates

论文作者

Wijewardena, Kanishka P., Grosz, Steven A., Cao, Kai, Jain, Anil K.

论文摘要

指纹识别的大部分成功归因于基于细节的指纹表示。人们认为,无法倒入细节模板以获得高忠诚度指纹图像,但是该假设已被证明是错误的。深度学习的成功导致了替代指纹表示(嵌入),希望它们可以提供更好的识别准确性以及深层基于网络的模板的不可粘性。我们评估深层指纹模板是否患有与细节模板相同的重建攻击。我们表明,虽然可以倒置一个深层模板以产生可以与其源图像相匹配的指纹图像,但与细节模板相比,深层模板对重建攻击更具抵抗力。特别是,使用最先进的商业指纹匹配器,对小细节模板的重建指纹图像产生了约100.0%(98.3%) @ far的0.01%(ITY-II)攻击。使用相同的商业匹配器从深层模板中重建的指纹图像的相应攻击性能对于I型和II型攻击的焦油均低于1%;但是,当使用相同的深网匹配重建的图像时,对于I型I(类型-II)攻击,它们的焦油为85.95%(68.10%)。此外,以前的指纹模板反演研究所缺少的是对黑盒攻击性能的评估,我们使用3种不同的最先进的指纹匹配器执行。我们得出的结论是,通过倒置细节模板产生的指纹图像非常容易受到白盒和黑盒攻击评估的影响,而由深模板产生的指纹图像对黑盒评估产生的指纹图像对黑盒评估具有抵抗力,并且对白盒评估的敏感性较小。

Much of the success of fingerprint recognition is attributed to minutiae-based fingerprint representation. It was believed that minutiae templates could not be inverted to obtain a high fidelity fingerprint image, but this assumption has been shown to be false. The success of deep learning has resulted in alternative fingerprint representations (embeddings), in the hope that they might offer better recognition accuracy as well as non-invertibility of deep network-based templates. We evaluate whether deep fingerprint templates suffer from the same reconstruction attacks as the minutiae templates. We show that while a deep template can be inverted to produce a fingerprint image that could be matched to its source image, deep templates are more resistant to reconstruction attacks than minutiae templates. In particular, reconstructed fingerprint images from minutiae templates yield a TAR of about 100.0% (98.3%) @ FAR of 0.01% for type-I (type-II) attacks using a state-of-the-art commercial fingerprint matcher, when tested on NIST SD4. The corresponding attack performance for reconstructed fingerprint images from deep templates using the same commercial matcher yields a TAR of less than 1% for both type-I and type-II attacks; however, when the reconstructed images are matched using the same deep network, they achieve a TAR of 85.95% (68.10%) for type-I (type-II) attacks. Furthermore, what is missing from previous fingerprint template inversion studies is an evaluation of the black-box attack performance, which we perform using 3 different state-of-the-art fingerprint matchers. We conclude that fingerprint images generated by inverting minutiae templates are highly susceptible to both white-box and black-box attack evaluations, while fingerprint images generated by deep templates are resistant to black-box evaluations and comparatively less susceptible to white-box evaluations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源