论文标题

固有的隐私保护,分散的随机优化

Decentralized Stochastic Optimization with Inherent Privacy Protection

论文作者

Wang, Yongqiang, Poor, H. Vincent

论文摘要

分散的随机优化是现代协作机器学习,分布式估计和控制以及大规模传感的基本基础。由于涉及的数据通常包含敏感信息,例如用户位置,医疗保健记录和金融交易,因此隐私保护已成为实施分散的随机优化算法的越来越紧迫的需求。在本文中,我们提出了一种分散的随机梯度下降算法,该算法嵌入了针对其他参与代理和外部窃听者的固有隐私保护。该提出的算法建立在基于动态的梯度 - 捕获机制中,以实现隐私保护而不损害优化准确性,这与基于差异的私人与基于差异的隐私解决方案的分散优化有显着差异,该解决方案必须进行分散的优化,这必须为隐私提供优化的优化准确性。基于动态的隐私方法是无加密的,因此避免产生大量的通信或计算开销,这是基于加密的隐私解决方案的常见问题,用于分散的随机优化。除了严格表征凸目标函数和非凸目标函数下提议的分散的随机梯度下降算法的收敛性能外,我们还提供了严格的信息理论分析其隐私保护强度。分布式估计问题以及基准计算机学习数据集上分散学习的数值实验的仿真结果证实了所提出方法的有效性。

Decentralized stochastic optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing. Since involved data usually contain sensitive information like user locations, healthcare records and financial transactions, privacy protection has become an increasingly pressing need in the implementation of decentralized stochastic optimization algorithms. In this paper, we propose a decentralized stochastic gradient descent algorithm which is embedded with inherent privacy protection for every participating agent against other participating agents and external eavesdroppers. This proposed algorithm builds in a dynamics based gradient-obfuscation mechanism to enable privacy protection without compromising optimization accuracy, which is in significant difference from differential-privacy based privacy solutions for decentralized optimization that have to trade optimization accuracy for privacy. The dynamics based privacy approach is encryption-free, and hence avoids incurring heavy communication or computation overhead, which is a common problem with encryption based privacy solutions for decentralized stochastic optimization. Besides rigorously characterizing the convergence performance of the proposed decentralized stochastic gradient descent algorithm under both convex objective functions and non-convex objective functions, we also provide rigorous information-theoretic analysis of its strength of privacy protection. Simulation results for a distributed estimation problem as well as numerical experiments for decentralized learning on a benchmark machine learning dataset confirm the effectiveness of the proposed approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源