论文标题
关于某些有限CW复合物的合理性猜想
On the rationality conjecture of some finite CW-complexes
论文作者
论文摘要
在本文中,我们建立了任何$(r-1)$ - 连接的\ cite {fks}提出的理性猜想($ r \ geq 2 $)$ kr $ - 二维cw-complex $ x $ x $ x $($ k \ geq 2 $那个$ u^k \ not = 0 $。 nilterencenty的nilpotent的%nilpotent等于$ k+1 $。接下来,我们通过给出这样的CW复合物的最小细胞结构来说明我们的结果,其共同体是截短的多项式代数。
In this paper, we establish the rationality conjecture raised in \cite{FKS} for any $(r-1)$-connected ($r\geq 2$) $kr$-dimensional CW-complex $X$ ($k\geq 2$) having a unique spherical cohomology class $u\in \tilde{H}^r(X, \mathbb{Z})$ such that $u^k\not =0$. %which is nilpotent with order of nilpotency equal to $k+1$. Next, we illustrate (topologically) our result by giving the minimal cell structure of such a CW-complex whose cohomology is a truncated polynomial algebra.