论文标题
气泡结合中的热力学非平衡效应:一项离散的玻尔兹曼研究
Thermodynamic non-equilibrium effects in bubble coalescence: A discrete Boltzmann study
论文作者
论文摘要
通过离散的玻尔兹曼模型(DBM)研究了两个最初静态气泡在两个最初静态气泡的聚合过程中的热力学非平衡(TNE)效应。详细研究了典型的非量化量的空间分布,即在进化过程中的非组织动量通量(NOMF)的空间分布进行了详细研究。密度加权统计方法用于突出气泡聚结的效果与形态学或动力学特征之间的关系。发现NOMF的$ XX $ -COMPONENT和$ YY $ - 组件是反间隔的; $ xy $ - 组件在合并过程中从反对称内部和外部双四极杆结构变为外八极结构。更重要的是,NOMF的平均$ XX $组成的演变提供了两个特征瞬间,将非平衡过程分为三个阶段。第一瞬间对应于平均合并速度获得最大值的时刻,而此时,小轴和主要轴的比率约为$ 1/2 $。第二瞬间对应于小轴和主要轴首次获得$ 1 $的时刻。有趣的是,发现三个量,即强度,结合的加速度和边界长度的负斜率,显示出高度的相关性并同时达到最大值。表面张力和热传导加速了气泡聚结的过程,而粘度会延迟它。表面张力和粘度都增强了全局非平衡强度,而热传导限制了它。这些特征和发现对气泡聚结的动力学提出了一些新的见解。
The Thermodynamic Non-Equilibrium (TNE) effects in the coalescing process of two initially static bubbles under thermal conditions are investigated by a Discrete Boltzmann Model (DBM). The spatial distributions of the typical none-quilibrium quantity, i.e., the Non-Organized Momentum Fluxes (NOMF) during evolutions are investigated in detail. The density-weighted statistical method is used to highlight the relationship between the TNE effects and the morphological or kinetics characteristics of bubble coalescence. It is found that the $xx$-component and $yy$-component of NOMF are anti-symmetrical; the $xy$-component changes from an anti-symmetric internal and external double quadrupole structure to an outer octupole structure during the coalescing process. More importantly, the evolution of the averaged $xx$-component of NOMF provides two characteristic instants, which divide the non-equilibrium process into three stages. The first instant corresponds to the moment when the mean coalescing speed gets the maximum and at this time the ratio of minor and major axes is about $1/2$. The second instant corresponds to the moment when the ratio of minor and major axes gets $1$ for the first time. It is interesting to find that the three quantities, TNE intensity, acceleration of coalescence and negative slope of boundary length, show a high degree of correlation and attain their maxima simultaneously. Surface tension and heat conduction accelerate the process of bubble coalescence while viscosity delays it. Both surface tension and viscosity enhance the global non-equilibrium intensity, whereas heat conduction restrains it. These TNE features and findings present some new insights into the kinetics of bubble coalescence.