论文标题
REED-MULLER代码的线性Runlength限制子代码和输入约束的BMS通道的编码方案
Linear Runlength-Limited Subcodes of Reed-Muller Codes and Coding Schemes for Input-Constrained BMS Channels
论文作者
论文摘要
在这项工作中,我们解决了Reed-Muller(RM)代码线性亚代码率最大的问题,所有代码都尊重Runlength-limimimimimimit(RLL)约束。我们的利息是在$(d,\ infty)$ - rll约束中,该限制规定,每对连续的$ 1 $ S至少$ d $ 0 $ s分开。考虑任何序列$ \ {{\ MATHCAL {C} _M} \} _ {m \ geq 1} $ rm代码的blocklength的rm代码,其速率$ r $,因为blocklength the blocklength to infrinity to Infinity to Infinity to nimplength。我们表明,对于任何线性$(d,\ infty)$ - rll子代码,$ \ hat {\ nathcal {c}} _ m $,代码$ \ nathcal {c} _m $的代码,它认为$ \ hat {\ nathcal {c}} $ $ \ hat的速率是随着区块长度为无穷大的极限。我们还考虑了未根据标准词典订购订购RM代码的坐标的方案,并在这种情况下也得出了线性$(D,\ infty)$ -RLL子代码的速率上限。接下来,为了设置$(d,\ infty)$ - rll输入约束的二进制二进制内存对称(BMS)频道,我们根据RM代码的cosets设计了一个新的编码方案。同样,对于通往无穷大的块长度,对于频道的低噪声状态,该代码以RM代码的任何线性子代码优于RM代码的任何线性子代码。
In this work, we address the question of the largest rate of linear subcodes of Reed-Muller (RM) codes, all of whose codewords respect a runlength-limited (RLL) constraint. Our interest is in the $(d,\infty)$-RLL constraint, which mandates that every pair of successive $1$s be separated by at least $d$ $0$s. Consider any sequence $\{{\mathcal{C}_m}\}_{m\geq 1}$ of RM codes with increasing blocklength, whose rates approach $R$, in the limit as the blocklength goes to infinity. We show that for any linear $(d,\infty)$-RLL subcode, $\hat{\mathcal{C}}_m$, of the code $\mathcal{C}_m$, it holds that the rate of $\hat{\mathcal{C}}_m$ is at most $\frac{R}{d+1}$, in the limit as the blocklength goes to infinity. We also consider scenarios where the coordinates of the RM codes are not ordered according to the standard lexicographic ordering, and derive rate upper bounds for linear $(d,\infty)$-RLL subcodes, in those cases as well. Next, for the setting of a $(d,\infty)$-RLL input-constrained binary memoryless symmetric (BMS) channel, we devise a new coding scheme, based on cosets of RM codes. Again, in the limit of blocklength going to infinity, this code outperforms any linear subcode of an RM code, in terms of rate, for low noise regimes of the channel.