论文标题

$ d $ - 知识对的通用本地化

Universal localizations of $d$-homological pairs

论文作者

Fedele, Francesca

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Let $k$ be an algebraically closed field and $Φ$ a finite dimensional $k$-algebra. The universal localization $Φ\rightarrow Φ_\mathcal{S}$ of $Φ$ with respect to a set of morphisms between finitely generated projective $Φ$-modules $\mathcal{S}$ always exists. Moreover, when $Φ$ is hereditary, Krause and Šťovíček proved that the universal localizations of $Φ$ are in bijective correspondence with various natural structures. Taking inspiration from an alternative definition of universal localizations involving a triangulated subcategory of $\mathcal{D}^{\text{perf}}(Φ)$, we introduce a higher analogue of universal localizations. That is, fixing a positive integer $d$, we define universal localizations of $d$-homological pairs $(Φ,\mathcal{F})$ with respect to suitable wide subcategories $\mathcal{U}$ of $\mathcal{D}^b(\text{mod}Φ)$. When gldim$Φ\leq d$, we show that the result by Krause and Šťovíček has a (partial) higher analogue and that such universal localizations exist with respect to any choice of $\mathcal{U}$ with the required properties. Moreover, we show that in this setup, the base case of our definition and the definition of classic universal localization coincide.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源