论文标题
部分可观测时空混沌系统的无模型预测
Aligned with Whom? Direct and social goals for AI systems
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
As artificial intelligence (AI) becomes more powerful and widespread, the AI alignment problem - how to ensure that AI systems pursue the goals that we want them to pursue - has garnered growing attention. This article distinguishes two types of alignment problems depending on whose goals we consider, and analyzes the different solutions necessitated by each. The direct alignment problem considers whether an AI system accomplishes the goals of the entity operating it. In contrast, the social alignment problem considers the effects of an AI system on larger groups or on society more broadly. In particular, it also considers whether the system imposes externalities on others. Whereas solutions to the direct alignment problem center around more robust implementation, social alignment problems typically arise because of conflicts between individual and group-level goals, elevating the importance of AI governance to mediate such conflicts. Addressing the social alignment problem requires both enforcing existing norms on their developers and operators and designing new norms that apply directly to AI systems.