论文标题

使用Yolov4使用转移学习在印度食品盘中检测物体检测4

Object Detection in Indian Food Platters using Transfer Learning with YOLOv4

论文作者

Pandey, Deepanshu, Parmar, Purva, Toshniwal, Gauri, Goel, Mansi, Agrawal, Vishesh, Dhiman, Shivangi, Gupta, Lavanya, Bagler, Ganesh

论文摘要

对象检测是计算机视觉中的一个众所周知的问题。尽管如此,它在传统的印度美食菜肴中的使用和普遍性仍然有限。特别是,由于三个原因,认识到一张照片中存在的印度食品菜肴具有挑战性。我们通过提供全面标记的印度食品数据集-1010的标签来解决这些问题,该数据集包含10种经常出现在印度主食中的食品类别,并使用Yolov4对象探测器模型使用转移学习。我们的模型能够达到10级数据集的总体地图分数为91.8%,F1得分为0.90。我们还提供了10个级别数据集-20的延伸,其中包含10种传统的印度食品类别。

Object detection is a well-known problem in computer vision. Despite this, its usage and pervasiveness in the traditional Indian food dishes has been limited. Particularly, recognizing Indian food dishes present in a single photo is challenging due to three reasons: 1. Lack of annotated Indian food datasets 2. Non-distinct boundaries between the dishes 3. High intra-class variation. We solve these issues by providing a comprehensively labelled Indian food dataset- IndianFood10, which contains 10 food classes that appear frequently in a staple Indian meal and using transfer learning with YOLOv4 object detector model. Our model is able to achieve an overall mAP score of 91.8% and f1-score of 0.90 for our 10 class dataset. We also provide an extension of our 10 class dataset- IndianFood20, which contains 10 more traditional Indian food classes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源