论文标题

在各向同性的Berwald标量曲率上

On isotropic Berwald scalar curvature

论文作者

Li, Ming

论文摘要

在这篇简短的论文中,我们在Berwald标量曲率和$ S $ curvature之间建立了更紧密的关系。实际上,我们证明,如果且仅当它具有弱的各向同性$ s $ curvature时,鳍度量指标具有各向同性的Berwald call曲率。对于标量标志曲率和弱各向同性$ s $ curvature的Finsler指标,它们几乎具有各向同性$ s $ curvature时,并且仅当FLAG曲率弱的各向同性时。

In this short paper, we establish a closer relation between the Berwald scalar curvature and the $S$-curvature. In fact, we prove that a Finsler metric has isotropic Berwald scalar curvature if and only if it has weakly isotropic $S$-curvature. For Finsler metrics of scalar flag curvature and of weakly isotropic $S$-curvature, they have almost isotropic $S$-curvature if and only if the flag curvature is weakly isotropic.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源