论文标题
量子相转换在双度$ o(n)\ times {\ mathbb {z} _2} $标量字段模型
Quantum phase transitions in a bidimensional $O(N) \times {\mathbb{Z}_2}$ scalar field model
论文作者
论文摘要
我们分析了$ O(n)\ times {\ mathbb {z} _2} $在$(1+1)$ - 尺寸中消失的温度下,可能发生的量子相变模式。使用循环近似高于二阶评估与两个耦合标量扇区相关的物理质量。我们观察到,在强的耦合方案中,破坏$ O(n)\ times {\ mathbb {z} _2} \ to o(n)$,由Mermin-Wagner-Hohenberg-Coleman Theorem允许,可以通过第二阶相过渡进行。为了满足这个无关定理,$ o(n)$ sector必须对所有耦合值都有有限的质量差距,以使得永远无法达到保密性,与更简单的$ {\ mathbb {z} _2 _2 _2} $版本中发生的情况相反。我们的评估还表明,两个不同字段之间相互作用的迹象以很大的方式改变了过渡模式。这些结果可能与描述具有竞争顺序参数的冷线性系统中发生的量子相变。同时,此处提出的超级超级化模型可以作为测试重新召集技术以及非扰动方法的原型有用。
We analyze the possible quantum phase transition patterns occurring within the $O(N) \times {\mathbb{Z}_2}$ scalar multi-field model at vanishing temperatures in $(1+1)$-dimensions. The physical masses associated with the two coupled scalar sectors are evaluated using the loop approximation up to second order. We observe that in the strong coupling regime, the breaking $O(N) \times {\mathbb{Z}_2} \to O(N)$, which is allowed by the Mermin-Wagner-Hohenberg-Coleman theorem, can take place through a second-order phase transition. In order to satisfy this no-go theorem, the $O(N)$ sector must have a finite mass gap for all coupling values, such that conformality is never attained, in opposition to what happens in the simpler ${\mathbb{Z}_2}$ version. Our evaluations also show that the sign of the interaction between the two different fields alters the transition pattern in a significant way. These results may be relevant to describe the quantum phase transitions taking place in cold linear systems with competing order parameters. At the same time the super-renormalizable model proposed here can turn out to be useful as a prototype to test resummation techniques as well as non-perturbative methods.