论文标题

NERF编辑:神经辐射场的几何编辑

NeRF-Editing: Geometry Editing of Neural Radiance Fields

论文作者

Yuan, Yu-Jie, Sun, Yang-Tian, Lai, Yu-Kun, Ma, Yuewen, Jia, Rongfei, Gao, Lin

论文摘要

隐式神经渲染,尤其是神经辐射场(NERF),在新型场景的合成中显示出很大的潜力。但是,当前基于NERF的方法无法使用户在场景中执行用户控制的形状变形。尽管现有作品提出了一些根据用户的约束来修改辐射字段的方法,但修改仅限于颜色编辑或对象翻译和旋转。在本文中,我们提出了一种允许用户在场景的隐式表示上执行可控形状变形的方法,并综合了编辑场景的新型视图图像,而无需重新训练网络。具体而言,我们在提取的显式网格表示与目标场景的隐式神经表示之间建立了对应关系。用户可以首先利用良好的基于​​网格的变形方法来变形场景的网格表示。然后,我们的方法利用用户编辑从网格表示形式中引入四面体网格作为代理来弯曲相机光线,从而获得了编辑的场景的渲染结果。广泛的实验表明,我们的框架不仅可以在综合数据上,而且可以在用户捕获的真实场景上获得理想的编辑结果。

Implicit neural rendering, especially Neural Radiance Field (NeRF), has shown great potential in novel view synthesis of a scene. However, current NeRF-based methods cannot enable users to perform user-controlled shape deformation in the scene. While existing works have proposed some approaches to modify the radiance field according to the user's constraints, the modification is limited to color editing or object translation and rotation. In this paper, we propose a method that allows users to perform controllable shape deformation on the implicit representation of the scene, and synthesizes the novel view images of the edited scene without re-training the network. Specifically, we establish a correspondence between the extracted explicit mesh representation and the implicit neural representation of the target scene. Users can first utilize well-developed mesh-based deformation methods to deform the mesh representation of the scene. Our method then utilizes user edits from the mesh representation to bend the camera rays by introducing a tetrahedra mesh as a proxy, obtaining the rendering results of the edited scene. Extensive experiments demonstrate that our framework can achieve ideal editing results not only on synthetic data, but also on real scenes captured by users.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源