论文标题

KePointnerf:使用关键点的相对空间编码来概括基于图像的体积化头像

KeypointNeRF: Generalizing Image-based Volumetric Avatars using Relative Spatial Encoding of Keypoints

论文作者

Mihajlovic, Marko, Bansal, Aayush, Zollhoefer, Michael, Tang, Siyu, Saito, Shunsuke

论文摘要

基于图像的体积人类使用像素对齐的特征有望泛化,从而看不见的姿势和身份。先前的工作利用全球空间编码和多视图几何一致性来减少空间歧义。但是,全球编码通常会过度适应培训数据的分布,并且很难从稀疏视图中学习多视图一致的重建。在这项工作中,我们研究了现有的空间编码的常见问题,并提出了一种简单而高效的方法,可以从稀疏视图中建模高保真性体积人类。关键思想之一是通过稀疏的3D关键点编码相对空间3D信息。这种方法对观点和跨数据库域间隙的稀疏性很强。我们的方法表现优于头部重建的最先进方法。关于人体的重建是看不见的受试者,我们还实现了与使用参数人体模型和时间特征聚集的先前工作相当的性能。我们的实验表明,先前工作中的大多数错误源于空间编码的不适当选择,因此我们为高保真基于图像的人类建模提供了一个新的方向。 https://markomih.github.io/keypointnerf

Image-based volumetric humans using pixel-aligned features promise generalization to unseen poses and identities. Prior work leverages global spatial encodings and multi-view geometric consistency to reduce spatial ambiguity. However, global encodings often suffer from overfitting to the distribution of the training data, and it is difficult to learn multi-view consistent reconstruction from sparse views. In this work, we investigate common issues with existing spatial encodings and propose a simple yet highly effective approach to modeling high-fidelity volumetric humans from sparse views. One of the key ideas is to encode relative spatial 3D information via sparse 3D keypoints. This approach is robust to the sparsity of viewpoints and cross-dataset domain gap. Our approach outperforms state-of-the-art methods for head reconstruction. On human body reconstruction for unseen subjects, we also achieve performance comparable to prior work that uses a parametric human body model and temporal feature aggregation. Our experiments show that a majority of errors in prior work stem from an inappropriate choice of spatial encoding and thus we suggest a new direction for high-fidelity image-based human modeling. https://markomih.github.io/KeypointNeRF

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源