论文标题
看到Terahertz海浪遇到障碍
Seeing Around Obstacles with Terahertz Waves
论文作者
论文摘要
传统的成像系统,例如眼睛或相机,位于直接视线(LOS)中的图像场景。大多数对象在光学和红外机制中都是不透明的,可以显着限制视场(FOV)。当前的方法可以看见闭塞借出来自微波或光条带的相邻表面的信号的多频反射传播。使用较低的频率信号的解剖信息受到限制,并且图像遇到了混乱,而光学系统会遇到大多数表面的弥散散射并遭受路径损失,从而限制了成像距离。在这项工作中,我们表明Terahertz(THZ)波可用于扩展对非视线(NLOS)的可见性,同时结合了两种光谱的优势。大多数建筑物表面的材料特性和粗糙度允许弥漫和强镜散射的独特组合。结果,大多数建筑物表面表现为有损的镜子,可以在THZ相机和NLOS场景之间进行传播路径。我们提出了一种镜子折叠算法,该算法将THZ波的多频反射传播到1)从混乱中纠正图像,以及2)在闭塞周围,而没有先验了解场景的几何形状和材料属性。为了验证所提出的NLOS成像方法的可行性,我们进行了数值分析,并开发了两个THZ成像系统,以证明在Sub-Thz频段(270-300 GHz)中进行现实世界的NLOS成像实验。结果表明,在各种多径传播方案中,THZ雷达成像系统的能力恢复了具有厘米级分辨率的LOS和NLOS对象的几何和姿势。 THZ NLOS成像可以在低的可见性条件(例如夜晚,强烈的环境光,烟雾)下运行,并使用计算廉价的图像重建算法。
Traditional imaging systems, such as the eye or cameras, image scenes that lie in the direct line-of-sight (LoS). Most objects are opaque in the optical and infrared regimes and can limit dramatically the field of view (FoV). Current approaches to see around occlusions exploit the multireflection propagation of signals from neighboring surfaces either in the microwave or the optical bands. Using lower frequency signals anatomical information is limited and images suffer from clutter while optical systems encounter diffuse scattering from most surfaces and suffer from path loss, thus limiting the imaging distance. In this work, we show that terahertz (THz) waves can be used to extend visibility to non-line-of-sight (NLoS) while combining the advantages of both spectra. The material properties and roughness of most building surfaces allow for a unique combination of both diffuse and strong specular scattering. As a result, most building surfaces behave as lossy mirrors that enable propagation paths between a THz camera and the NLoS scenes. We propose a mirror folding algorithm that tracks the multireflection propagation of THz waves to 1) correct the image from cluttering and 2) see around occlusions without a priori knowledge of the scene geometry and material properties. To validate the feasibility of the proposed NLoS imaging approach, we carried out a numerical analysis and developed two THz imaging systems to demonstrate real-world NLoS imaging experiments in sub-THz bands (270-300 GHz). The results show the capability of THz radar imaging systems to recover both the geometry and pose of LoS and NLoS objects with centimeter-scale resolution in various multipath propagation scenarios. THz NLoS imaging can operate in low visibility conditions (e.g., night, strong ambient light, smoke) and uses computationally inexpensive image reconstruction algorithms.