论文标题
Breitenlohner-Freedman绑在双曲线砖上
Breitenlohner-Freedman bound on hyperbolic tilings
论文作者
论文摘要
我们确定了如何在二维欧几里得抗DE保姆空间的瓷砖上实现Breitenlohner-Freedman(BF)结合。对于连续体,BF结合指出,在反DE保姆上,波动模式对于小的负质量尺寸$ m^2 $仍然稳定。这是由重力系统的真实和正面总能量进行的。对于有限的截止$ \ varepsilon $,我们在常规双曲线上以数值方式求解klein-gordon方程。当$ \ varepsilon \ to0 $时,我们发现连续BF绑定的方式与瓷砖无关。我们通过模拟双曲线电路确认了这些结果。此外,我们提出了一个新的电路,其中包括活跃元素,该电路允许在BF界面上进一步扫描$ M^2 $。
We establish how the Breitenlohner-Freedman (BF) bound is realized on tilings of two-dimensional Euclidean Anti-de Sitter space. For the continuum, the BF bound states that on Anti-de Sitter spaces, fluctuation modes remain stable for small negative mass-squared $m^2$. This follows from a real and positive total energy of the gravitational system. For finite cutoff $\varepsilon$, we solve the Klein-Gordon equation numerically on regular hyperbolic tilings. When $\varepsilon\to0$, we find that the continuum BF bound is approached in a manner independent of the tiling. We confirm these results via simulations of a hyperbolic electric circuit. Moreover, we propose a novel circuit including active elements that allows to further scan values of $m^2$ above the BF bound.