论文标题
有效的自动化深度学习时间序列预测
Efficient Automated Deep Learning for Time Series Forecasting
论文作者
论文摘要
近年来,自动化机器学习(AUTOML),尤其是自动化深度学习(AUTODL)系统的效率极大提高,但最近的工作着重于表格,图像或NLP任务。到目前为止,尽管在将不同的新颖体系结构应用于此类任务方面取得了巨大的成功,但对时间序列预测的一般AutoDL框架很少关注。在本文中,我们提出了一种有效的方法,用于对时间序列预测的整个数据处理管道的神经结构和超参数的联合优化。与常见的NAS搜索空间相反,我们设计了一个新型的神经体系结构搜索空间,涵盖了各种最新的架构,从而可以对不同的DL方法进行有效的宏观搜索。为了在如此大的配置空间中有效搜索,我们将贝叶斯优化使用多保真优化。我们从经验上研究了几种不同的预算类型,可以在不同的预测数据集上进行有效的多保真优化。此外,我们将所得的系统(称为\ System)与几个已建立的基线进行了比较,并表明它在几个数据集中大大优于所有基准。
Recent years have witnessed tremendously improved efficiency of Automated Machine Learning (AutoML), especially Automated Deep Learning (AutoDL) systems, but recent work focuses on tabular, image, or NLP tasks. So far, little attention has been paid to general AutoDL frameworks for time series forecasting, despite the enormous success in applying different novel architectures to such tasks. In this paper, we propose an efficient approach for the joint optimization of neural architecture and hyperparameters of the entire data processing pipeline for time series forecasting. In contrast to common NAS search spaces, we designed a novel neural architecture search space covering various state-of-the-art architectures, allowing for an efficient macro-search over different DL approaches. To efficiently search in such a large configuration space, we use Bayesian optimization with multi-fidelity optimization. We empirically study several different budget types enabling efficient multi-fidelity optimization on different forecasting datasets. Furthermore, we compared our resulting system, dubbed \system, against several established baselines and show that it significantly outperforms all of them across several datasets.