论文标题
从语言中识别有关对象结构的概念库
Identifying concept libraries from language about object structure
论文作者
论文摘要
我们对视觉世界的理解超出了命名对象,包括我们将对象分析为有意义的部分,属性和关系的能力。在这项工作中,我们利用自然语言描述为各种各样的2K程序生成的对象集,以识别人们使用的零件以及导致这些部分比其他部分相比受到青睐的原则。我们将问题正式化为在包含不同部分概念的程序库的搜索中,使用机器翻译中的工具来评估每个库中的程序与人类语言保持一致的方式。通过将自然主义的语言与结构化的程序表示结合在一起,我们发现了一个基本的信息理论理论折衷,构成了概念的人的名字:人们倾向于允许对每个物体进行简洁描述的词典,同时还可以最大程度地减少词典本身的大小。
Our understanding of the visual world goes beyond naming objects, encompassing our ability to parse objects into meaningful parts, attributes, and relations. In this work, we leverage natural language descriptions for a diverse set of 2K procedurally generated objects to identify the parts people use and the principles leading these parts to be favored over others. We formalize our problem as search over a space of program libraries that contain different part concepts, using tools from machine translation to evaluate how well programs expressed in each library align to human language. By combining naturalistic language at scale with structured program representations, we discover a fundamental information-theoretic tradeoff governing the part concepts people name: people favor a lexicon that allows concise descriptions of each object, while also minimizing the size of the lexicon itself.