论文标题
连续脱位动力学的计算有效实现:对超铁粒多晶的配方和应用
A computationally efficient implementation of continuum dislocation dynamics: Formulation and application to ultrafine-grained Mg polycrystals
论文作者
论文摘要
连续脱位动力学(CDD)代表曲面和连接位错线系统的演变,这些曲线状磁场变量包括循环的体积密度(或“曲率密度”)作为附加场。由于位错曲率代表了基本离散位错密度张量的空间衍生物,因此必要性的曲率场进化方程包含密度场的数值不便的高阶衍生物。我们提出了一个简单的近似值来表达密度场的曲率,并将其应用于MG多晶的变形中的基准问题。
Continuum dislocation dynamics (CDD) represents the evolution of systems of curved and connected dislocation lines in terms of density-like field variables which include the volume density of loops (or 'curvature density') as an additional field. Since dislocation curvature represents a spatial derivative of the underlying discrete dislocation density tensor, the curvature field evolution equation of necessity contains numerically inconvenient higher-order derivatives of the density fields. We propose a simple approximation to express curvature in terms of density fields, and demonstrate its application to a benchmark problem in deformation of Mg polycrystals.