论文标题
接近单调的可调式低温NIOBIUM电子场发射器
Near-monochromatic tuneable cryogenic niobium electron field emitter
论文作者
论文摘要
创建,操纵和检测相干电子是未来量子显微镜和光谱技术的核心。在低温下利用并专门改变电子束源的量子特征可以增强其发射特性。在这里,我们描述了从单晶的电子场发射,在5.9 K的温度下,超导尼伯族纳米型。发射的电子能量谱显示,由于通过局部隧道式的带态在Nano Protrusion的顶点和较低的伪装供应的固定型带态通过局部隧道发射的可调式谐振隧道隧道型,从而揭示了可调的谐振隧道隧道隧道式场上,并在较低的福利夫人的情况下进行了调谐。这是比常规场发射电子源低的数量级。尖端的自我关注几何形状以3.7度的角度发射,亮度降低了3.8 x 10exp8 a/(m2 sr v),在4.1 Na梁电流和69 MeV的能量宽度时稳定性的稳定性。该来源将减少晶状体像差的影响,并在低能电子显微镜,电子能量损耗光谱和高分辨率振动光谱中启用新模式。
Creating, manipulating, and detecting coherent electrons is at the heart of future quantum microscopy and spectroscopy technologies. Leveraging and specifically altering the quantum features of an electron beam source at low temperatures can enhance its emission properties. Here, we describe electron field emission from a monocrystalline, superconducting niobium nanotip at a temperature of 5.9 K. The emitted electron energy spectrum reveals an ultra-narrow distribution down to 16 meV due to tunable resonant tunneling field emission via localized band states at a nano-protrusion's apex and a cut-off at the sharp low-temperature Fermi-edge. This is an order of magnitude lower than for conventional field emission electron sources. The self-focusing geometry of the tip leads to emission in an angle of 3.7 deg, a reduced brightness of 3.8 x 10exp8 A/(m2 sr V), and a stability of hours at 4.1 nA beam current and 69 meV energy width. This source will decrease the impact of lens aberration and enable new modes in low-energy electron microscopy, electron energy loss spectroscopy, and high-resolution vibrational spectroscopy.