论文标题
具有刺激的拉曼散射显微镜的活细胞中的神经递质传输成像神经递质转运
Imaging neurotransmitter transport in live cells with stimulated Raman scattering microscopy
论文作者
论文摘要
化学神经传递是神经型脑功能的核心,但也与各种精神神经退行性疾病有关。神经递质的释放动力学与神经元电信号传播相关,但与众不同。因此,有必要从神经元电活动分开跟踪神经递质调节。在这里,我们提出了一种新的方法,用于成像具有刺激的拉曼散射(SRS)显微镜的神经递质分子。使用SRS显微镜,我们基于碳脱氧于碳的振动频率,分别对PC12铬蛋白细胞和原代海马神经元进行直接成像,分别对原发性海马神经元进行成像。我们证明,这些同位素学的SRS成像直接可视化细胞内神经递质,而无需更改神经递质的化学身份并需要自定义合成或遗传编码方案。我们进一步表明,神经递质释放的刺激导致总体20-50%的细胞内神经递质信号降低,与可比的神经传递动力学研究一致,并且能够观察到囊泡神经递质释放的细胞间和细胞内变异。综上所述,我们的数据表明,神经递质同位素学可以用作商业上可用的,生物相容性和可推广的方法,可将神经递质的神经递质具有与其天然对应物相同的一个依恋分子。
Chemical neurotransmission is central to neurotypical brain function but also implicated in a variety of psychiatric neurodegenerative diseases. The release dynamics of neurotransmitters is correlated with but distinct from neuronal electrical signal propagation. It is therefore necessary to track neurotransmitter modulation separately from neuron electrical activity. Here, we present a new approach for imaging deuterated neurotransmitter molecules with stimulated Raman scattering (SRS) microscopy. Using SRS microscopy, we perform direct imaging of deuterated dopamine and GABA in PC12 chromaffin cells, and in primary hippocampal neurons, respectively, based on the carbon-deuterium vibrational frequencies. We demonstrate that SRS imaging of these isotopologues directly visualizes intracellular neurotransmitters without changing the neurotransmitters' chemical identity and requiring custom synthesis or genetic encoding protocols. We further show that stimulation of neurotransmitter release results in an overall 20-50 percent intracellular neurotransmitter signal reduction, in agreement with comparable neurotransmission dynamics studies, with the ability to observe inter- and intracellular variation in vesicular neurotransmitter release. Taken together, our data suggest that neurotransmitter isotopologues can serve as a commercially-available, biocompatible, and generalizable method to image neurotransmitters with deuterated molecules that are virtually chemically identical to their native counterparts.