论文标题

Monge-ampère方程的特征值问题的有效运算符方法

An Efficient Operator-Splitting Method for the Eigenvalue Problem of the Monge-Ampère Equation

论文作者

Liu, Hao, Leung, Shingyu, Qian, Jianliang

论文摘要

我们为Aleksandrov Sensic中Monge-Ampère操作员的特征值问题开发了一种有效的操作员分解方法。我们方法的主干依赖于Abedin和Kitagawa提出的收敛瑞利倒数迭代公式({M} Onge- {a} Mp {a} mp {al} reigenvalue问题的反向迭代,{\美国数学社会社会社会},148(2020),49.11,495-49.49,495-49.49,495-49.49,495。通过修改理论公式,我们开发了一种有效的算法,用于计算Monge-AmpèreOperator在每次迭代过程中求解受约束的Monge-ampère方程,以计算Monge-AmpèreOperator的特征值和特征功能。我们的方法由四个基本步骤组成:(i)制定Monge-ampère特征值问题作为约束的优化问题; (ii)采用指标函数来治疗约束; (iii)引入一个辅助变量,将原始约束优化问题与更简单的优化子问题解散,并将所得的新优化问题与初始值问题相关联; (iv)通过及时的操作员分解方法和空间中的混合有限元方法来离散所得的初价问题。几个实验证明了我们方法的性能。与现有方法相比,新方法在计算成本方面更有效,并且在准确性方面具有可比的收敛速度。

We develop an efficient operator-splitting method for the eigenvalue problem of the Monge-Ampère operator in the Aleksandrov sense. The backbone of our method relies on a convergent Rayleigh inverse iterative formulation proposed by Abedin and Kitagawa (Inverse iteration for the {M}onge-{A}mp{è}re eigenvalue problem, {\it Proceedings of the American Mathematical Society}, 148 (2020), no. 11, 4975-4886). Modifying the theoretical formulation, we develop an efficient algorithm for computing the eigenvalue and eigenfunction of the Monge-Ampère operator by solving a constrained Monge-Ampère equation during each iteration. Our method consists of four essential steps: (i) Formulate the Monge-Ampère eigenvalue problem as an optimization problem with a constraint; (ii) Adopt an indicator function to treat the constraint; (iii) Introduce an auxiliary variable to decouple the original constrained optimization problem into simpler optimization subproblems and associate the resulting new optimization problem with an initial value problem; and (iv) Discretize the resulting initial-value problem by an operator-splitting method in time and a mixed finite element method in space. The performance of our method is demonstrated by several experiments. Compared to existing methods, the new method is more efficient in terms of computational cost and has a comparable rate of convergence in terms of accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源