论文标题

Lorentzian指标的刚度与无效的时间相同

Rigidity for Lorentzian metrics with the same length of null-geodesics

论文作者

Eskin, Gregory

论文摘要

我们研究了Lorentzian度量,独立于气缸$ \ mathbb {r} \timsΩ$中的时间变量,其中$ x_0 \ in \ mathbb {r} $是时间变量,而$ω$是$ \ m athbb {r}^n $ in $ \ mathbb {r}^n $。我们考虑在$ \ Mathbb {r} \ timesω$上以$ \ mathbb {r} \ times \ times \partialΩ$ at $ t = 0 $启动的前向null-geodesics,然后在后来的某个时候离开$ \ times \partialΩ$。我们证明了以下刚度结果:如果两个洛伦兹指标在某些规范上足够接近,并且相应的无偏格学具有相等的长度,则指标相等。

We study the Lorentzian metric independent of the time variable in the cylinder $\mathbb{R}\timesΩ$ where $x_0\in\mathbb{R}$ is the time variable and $Ω$ is a bounded smooth domain in $\mathbb{R}^n$. We consider forward null-geodesics in $\mathbb{R}\times Ω$ starting on $\mathbb{R}\times\partialΩ$ at $t=0$ and leaving $\mathbb{R}\timesΩ$ at some later time. We prove the following rigidity result: If two Lorentzian metrics are close enough in some norm and if corresponding null-geodesics have equal lengths then the metrics are equal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源