论文标题

珊瑚:使用差分熵的不同环境中鲁塔雷达和激光雷达感知的内省

CorAl: Introspection for Robust Radar and Lidar Perception in Diverse Environments Using Differential Entropy

论文作者

Adolfsson, Daniel, Castellano-Quero, Manuel, Magnusson, Martin, Lilienthal, Achim J., Andreasson, Henrik

论文摘要

强大的感知是实现移动机器人长期操作的重要组成部分。这取决于通过可靠的传感器数据和预处理以及通过内省的失败意识,例如自我评估定位性能的能力。本文介绍了珊瑚:一种原则上,直观且可推广的方法,用于衡量点云对之间对齐的质量,该方法学会以自我监督的方式检测对齐误差。珊瑚将点云中的微分熵与联合中的熵进行比较,以解释场景固有的熵。通过利用双熵测量值,我们获得了对小对准误差高度敏感的质量指标,并且仍然可以很好地推广到看不见的环境。在这项工作中,我们通过提出一种两阶段的滤波技术,将唯一的纯珊瑚珊瑚研究扩展到雷达数据,该技术可从嘈杂的雷达扫描中产生高质量的点云。因此,我们以两种方式靶向健壮的感知:通过引入一种内省评估对齐质量并将其应用于固有稳健的传感器模态的方法。我们表明,我们的过滤技术与珊瑚结合使用,可以应用于对齐分类的问题,并且它检测到高达98%准确性的城市环境中的小对齐错误,如果仅在不同的环境中接受培训,则最高可达96%。我们的LIDAR和雷达实验表明,珊瑚在ETH激光雷达基准上的表现都胜过以前的方法,其中包括几个室内和室外环境,大规模的牛津和木兰雷达雷达数据集用于城市交通方面,结果还表明,珊瑚在无需重新验证的情况下跨越实质上不同的环境都非常奇妙。

Robust perception is an essential component to enable long-term operation of mobile robots. It depends on failure resilience through reliable sensor data and preprocessing, as well as failure awareness through introspection, for example the ability to self-assess localization performance. This paper presents CorAl: a principled, intuitive, and generalizable method to measure the quality of alignment between pairs of point clouds, which learns to detect alignment errors in a self-supervised manner. CorAl compares the differential entropy in the point clouds separately with the entropy in their union to account for entropy inherent to the scene. By making use of dual entropy measurements, we obtain a quality metric that is highly sensitive to small alignment errors and still generalizes well to unseen environments. In this work, we extend our previous work on lidar-only CorAl to radar data by proposing a two-stage filtering technique that produces high-quality point clouds from noisy radar scans. Thus we target robust perception in two ways: by introducing a method that introspectively assesses alignment quality, and applying it to an inherently robust sensor modality. We show that our filtering technique combined with CorAl can be applied to the problem of alignment classification, and that it detects small alignment errors in urban settings with up to 98% accuracy, and with up to 96% if trained only in a different environment. Our lidar and radar experiments demonstrate that CorAl outperforms previous methods both on the ETH lidar benchmark, which includes several indoor and outdoor environments, and the large-scale Oxford and MulRan radar data sets for urban traffic scenarios The results also demonstrate that CorAl generalizes very well across substantially different environments without the need of retraining.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源