论文标题
2桥结的平均属渐近线性
The average genus of a 2-bridge knot is asymptotically linear
论文作者
论文摘要
实验性工作表明,结的塞菲尔特属相对于结的交叉数线性生长。在本文中,我们使用台球台式型号,价格为$ 2 $桥或合理的结,以表明$ 2 $桥结的平均属,即交叉数字$ c $渐近地接近$ c/4+1/12 $。
Experimental work suggests that the Seifert genus of a knot grows linearly with respect to the crossing number of the knot. In this article, we use a billiard table model for $2$-bridge or rational knots to show that the average genus of a $2$-bridge knot with crossing number $c$ asymptotically approaches $c/4+1/12$.