论文标题

2桥结的平均属渐近线性

The average genus of a 2-bridge knot is asymptotically linear

论文作者

Cohen, Moshe, Lowrance, Adam M.

论文摘要

实验性工作表明,结的塞菲尔特属相对于结的交叉数线性生长。在本文中,我们使用台球台式型号,价格为$ 2 $桥或合理的结,以表明$ 2 $桥结的平均属,即交叉数字$ c $渐近地接近$ c/4+1/12 $。

Experimental work suggests that the Seifert genus of a knot grows linearly with respect to the crossing number of the knot. In this article, we use a billiard table model for $2$-bridge or rational knots to show that the average genus of a $2$-bridge knot with crossing number $c$ asymptotically approaches $c/4+1/12$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源