论文标题

基于生成模板的事​​件提取的动态前缀调节

Dynamic Prefix-Tuning for Generative Template-based Event Extraction

论文作者

Liu, Xiao, Huang, Heyan, Shi, Ge, Wang, Bo

论文摘要

我们以基于模板的有条件生成的方式考虑以生成方式提取事件。尽管将事件提取的任务作为提示的序列生成问题的趋势上升,但这些基于一代的方法面临两个重大挑战,包括使用次优提示和静态事件类型信息。在本文中,我们通过将上下文信息与特定于类型的前缀集成,以学习每个上下文的上下文特定前缀,以动态前缀(GTEE-DYNPREF)提出一种基于生成模板的事​​件提取方法。实验结果表明,我们的模型通过ACE 2005上的基于最新的分类模型Oneie实现了竞争成果,并在ERE上取得了最佳性能。此外,我们的模型被证明可以有效地适合新类型的事件。

We consider event extraction in a generative manner with template-based conditional generation. Although there is a rising trend of casting the task of event extraction as a sequence generation problem with prompts, these generation-based methods have two significant challenges, including using suboptimal prompts and static event type information. In this paper, we propose a generative template-based event extraction method with dynamic prefix (GTEE-DynPref) by integrating context information with type-specific prefixes to learn a context-specific prefix for each context. Experimental results show that our model achieves competitive results with the state-of-the-art classification-based model OneIE on ACE 2005 and achieves the best performances on ERE. Additionally, our model is proven to be portable to new types of events effectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源