论文标题

学习的顶点下降:3D人类模型拟合的新方向

Learned Vertex Descent: A New Direction for 3D Human Model Fitting

论文作者

Corona, Enric, Pons-Moll, Gerard, Alenyà, Guillem, Moreno-Noguer, Francesc

论文摘要

我们提出了一种基于优化的新型范式,用于在图像和扫描上拟合3D人体模型。与直接从输入图像中直接回归低维统计体模型(例如SMPL)参数的现有方法相反,我们训练了每个vertex神经场网络的集合。该网络以分布式的方式预测基于当前顶点投影处提取的神经特征的顶点下降方向。在推断时,我们在梯度降低的优化管道中采用该网络,称为LVD,直到其收敛性为止,即使将所有顶点初始化为单个点,通常也会以一秒钟的分数发生。一项详尽的评估表明,我们的方法能够捕获具有截然不同的身体形状的穿着衣服的人体,与最先进的人相比取得了重大改善。 LVD也适用于人类和手的3D模型拟合,为此,我们以更简单,更快的方法对SOTA表现出显着改善。

We propose a novel optimization-based paradigm for 3D human model fitting on images and scans. In contrast to existing approaches that directly regress the parameters of a low-dimensional statistical body model (e.g. SMPL) from input images, we train an ensemble of per-vertex neural fields network. The network predicts, in a distributed manner, the vertex descent direction towards the ground truth, based on neural features extracted at the current vertex projection. At inference, we employ this network, dubbed LVD, within a gradient-descent optimization pipeline until its convergence, which typically occurs in a fraction of a second even when initializing all vertices into a single point. An exhaustive evaluation demonstrates that our approach is able to capture the underlying body of clothed people with very different body shapes, achieving a significant improvement compared to state-of-the-art. LVD is also applicable to 3D model fitting of humans and hands, for which we show a significant improvement to the SOTA with a much simpler and faster method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源