论文标题
多变量量子信号处理(M-QSP):两头甲骨文的预言
Multivariable quantum signal processing (M-QSP): prophecies of the two-headed oracle
论文作者
论文摘要
最近的工作表明,量子信号处理(QSP)及其多Quit的升起版本,量子奇异值转换(QSVT),统一和改善大多数量子算法的表示。 QSP/QSVT通过交替的Ansätze来表征该能力,可以通过多项式函数省视单位矩阵的子系统的奇异值;这些算法在数值上是稳定的,并且在分析上得到了很好的理解。也就是说,QSP/QSVT需要一致地访问单个Oracle,这对计算两个或多个Oracles的联合特性一无所知;这些可以便宜得多,以确定能够连贯地将牙齿钉在彼此对抗的能力上。 这项工作介绍了多个变量的QSP的相应理论:M-QSP。出乎意料的是,尽管代数的基本定理对于多变量多项式存在不存在,但仍存在必要且充分的条件,在该条件下,可以进行所需的稳定多变量多项式转换。此外,出于非显而易见的原因,QSP协议使用的经典子例程在多变量设置中生存,并在数值上保持稳定和有效。为了一个明确的猜想,我们证明了可实现的多变量转换的家族就像预期的那样宽松地受到限制。 M-QSP忽略近似多个变量的关节函数的独特能力一致地导致新的加速与其他量子算法不相关,并提供了从量子算法到代数几何形状的桥梁。
Recent work shows that quantum signal processing (QSP) and its multi-qubit lifted version, quantum singular value transformation (QSVT), unify and improve the presentation of most quantum algorithms. QSP/QSVT characterize the ability, by alternating ansätze, to obliviously transform the singular values of subsystems of unitary matrices by polynomial functions; these algorithms are numerically stable and analytically well-understood. That said, QSP/QSVT require consistent access to a single oracle, saying nothing about computing joint properties of two or more oracles; these can be far cheaper to determine given an ability to pit oracles against one another coherently. This work introduces a corresponding theory of QSP over multiple variables: M-QSP. Surprisingly, despite the non-existence of the fundamental theorem of algebra for multivariable polynomials, there exist necessary and sufficient conditions under which a desired stable multivariable polynomial transformation is possible. Moreover, the classical subroutines used by QSP protocols survive in the multivariable setting for non-obvious reasons, and remain numerically stable and efficient. Up to a well-defined conjecture, we give proof that the family of achievable multivariable transforms is as loosely constrained as could be expected. The unique ability of M-QSP to obliviously approximate joint functions of multiple variables coherently leads to novel speedups incommensurate with those of other quantum algorithms, and provides a bridge from quantum algorithms to algebraic geometry.