论文标题
在感应和环境不确定性下,针对移动操作任务的反应性信息计划
Reactive Informative Planning for Mobile Manipulation Tasks under Sensing and Environmental Uncertainty
论文作者
论文摘要
在本文中,我们解决了在感应和环境不确定性存在下移动操纵计划问题。特别是,我们考虑在具有未知几何形状和不确定的可移动对象的环境中运行的移动传感操纵器,同时负责完成需要以逻辑方式抓住和释放对象的任务。现有的算法要么不能很好地扩展,要么忽略感知和/或环境不确定性。为了面对这些挑战,我们提出了一个混合控制体系结构,符号控制器基于环境反馈生成高级操纵命令(例如,掌握对象),一项信息性的计划者设计的途径可以积极地降低利息对象的不确定性,并在涉及稀疏的范围内避免了稀疏的无态度的范围,以避免使用稀疏的途径。当机器人探索其工作空间时,整体体系结构可以在线处理环境和感知不确定性。使用数值模拟,我们表明所提出的体系结构可以处理增加复杂性的任务,同时响应意外的不良配置。
In this paper we address mobile manipulation planning problems in the presence of sensing and environmental uncertainty. In particular, we consider mobile sensing manipulators operating in environments with unknown geometry and uncertain movable objects, while being responsible for accomplishing tasks requiring grasping and releasing objects in a logical fashion. Existing algorithms either do not scale well or neglect sensing and/or environmental uncertainty. To face these challenges, we propose a hybrid control architecture, where a symbolic controller generates high-level manipulation commands (e.g., grasp an object) based on environmental feedback, an informative planner designs paths to actively decrease the uncertainty of objects of interest, and a continuous reactive controller tracks the sparse waypoints comprising the informative paths while avoiding a priori unknown obstacles. The overall architecture can handle environmental and sensing uncertainty online, as the robot explores its workspace. Using numerical simulations, we show that the proposed architecture can handle tasks of increased complexity while responding to unanticipated adverse configurations.