论文标题

使用随机效应在空间捕获重新接收中对空间自相关的检测概率进行建模

Modelling spatially autocorrelated detection probabilities in spatial capture-recapture using random effects

论文作者

Dey, Soumen, Moqanaki, Ehsan M., Milleret, Cyril, Dupont, Pierre, Tourani, Mahdieh, Bischof, Richard

论文摘要

现在,空间捕获 - 接收器(SCR)模型被广泛用于估计重复单个空间相遇的密度。 SCR通过对检测概率与检测器和个体活动中心之间的距离进行建模来解释单个检测中固有的空间自相关。但是,由于环境或采样特征,检测概率的其他空间异质性仍可能蔓延。如果没有提示,这种差异可能会导致人口规模估计值明显偏见。使用模拟,我们描述和测试了三个使用通用线性混合模型(GLMM)的贝叶斯SCR模型,以考虑到跨检测器的基线检测概率的潜在异质性,使用:独立的随机效应(RE),空间自动相关的随机效应(SARE)和两组有限混合物模型(FM)。总体而言,SARE提供了偏见最少的人口规模估计值(RB中位数:-9-6%)。当空间自相关较高时,SARE在预测检测概率中的异质性空间模式方面也表现得最好。在自相关的中间水平,用FM获得的检测概率的估计值比SARE和RE产生的更准确。如果每个检测器的检测数量实际较低(最多为1),此处考虑的所有GLMM都可能需要通过汇总基线检测概率参数(“聚集”)(“聚集”)来减少随机效应,以避免过度参数化。与SCR-GLMM相关的附加复杂性和计算开销只有在极端的空间异质性情况下才有合理。但是,即使在不太极端的情况下,检测和估计空间异质检测概率也可能有助于计划或调整监测方案。

Spatial capture-recapture (SCR) models are now widely used for estimating density from repeated individual spatial encounters. SCR accounts for the inherent spatial autocorrelation in individual detections by modelling detection probabilities as a function of distance between the detectors and individual activity centres. However, additional spatial heterogeneity in detection probability may still creep in due to environmental or sampling characteristics. if unaccounted for, such variation can lead to pronounced bias in population size estimates. Using simulations, we describe and test three Bayesian SCR models that use generalized linear mixed models (GLMM) to account for latent heterogeneity in baseline detection probability across detectors using: independent random effects (RE), spatially autocorrelated random effects (SARE), and a two-group finite mixture model (FM). Overall, SARE provided the least biased population size estimates (median RB: -9 -- 6%). When spatial autocorrelation was high, SARE also performed best at predicting the spatial pattern of heterogeneity in detection probability. At intermediate levels of autocorrelation, spatially-explicit estimates of detection probability obtained with FM where more accurate than those generated by SARE and RE. In cases where the number of detections per detector is realistically low (at most 1), all GLMMs considered here may require dimension reduction of the random effects by pooling baseline detection probability parameters across neighboring detectors ("aggregation") to avoid over-parameterization. The added complexity and computational overhead associated with SCR-GLMMs may only be justified in extreme cases of spatial heterogeneity. However, even in less extreme cases, detecting and estimating spatially heterogeneous detection probability may assist in planning or adjusting monitoring schemes.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源