论文标题

复杂辫子组的常规理论

Regular theory in complex braid groups

论文作者

Garnier, Owen

论文摘要

贝西斯(Bessis)在有关复杂反射布置的开创性论文中,为一个发育良好的不可减至的复杂反射组的编织组引入了一个Garside结构。使用这种Garside结构,他在反射组中的常规元素与纯编织组的“完整扭曲”元素的根之间建立了牢固的联系。 然后,他建议将该定理的结论扩展到生成良好的群体中的常规元素的中心化。在本文中,我们对这个问题给出了积极的答案,此外,我们还表明,这些结果适用于任意反思组。

In his seminal paper on complex reflection arrangements, Bessis introduces a Garside structure for the braid group of a well-generated irreducible complex reflection group. Using this Garside structure, he establishes a strong connection between regular elements in the reflection group, and roots of the "full twist" element of the pure braid group. He then suggests that it would be possible to extend the conclusion of this theorem to centralizers of regular elements in well-generated groups. In this paper we give a positive answer to this question and we show moreover that these results hold for an arbitrary reflection group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源