论文标题

Diopicencoder:中毒在对比学习中未标记的预训练数据

PoisonedEncoder: Poisoning the Unlabeled Pre-training Data in Contrastive Learning

论文作者

Liu, Hongbin, Jia, Jinyuan, Gong, Neil Zhenqiang

论文摘要

对比度学习使用大量未标记的数据进行图像编码器,以便将图像编码器用作各种下游任务的通用特征提取器。在这项工作中,我们提出了Diopionencoder,这是一种数据中毒攻击以进行对比学习。尤其是,攻击者将精心制作的中毒输入注入未标记的预训练数据中,以便根据有毒编码器构建的下游分类器,用于为多个目标下游任务,同时将攻击者选择的,任意的清洁输入分类为攻击者选择的攻击者选择的,任意的类别。我们将数据中毒攻击作为双重优化问题,其解决方案是中毒输入的集合。我们提出了一种对比学习的方法来大致解决它。我们在多个数据集上的评估表明,DisoDeCoder在维持下游分类器的测试准确性上取得了很高的攻击成功率,该分类器的测试准确性是为非攻击者选择输入的中毒编码器构建的。我们还评估了针对中毒编码器的五种防御能力,包括一项预处理,三个进行了处理和一个后加工的防御措施。我们的结果表明,这些防御能力可以降低中毒的攻击成功率,但它们也牺牲了编码器的效用或需要大量清洁的预训练数据集。

Contrastive learning pre-trains an image encoder using a large amount of unlabeled data such that the image encoder can be used as a general-purpose feature extractor for various downstream tasks. In this work, we propose PoisonedEncoder, a data poisoning attack to contrastive learning. In particular, an attacker injects carefully crafted poisoning inputs into the unlabeled pre-training data, such that the downstream classifiers built based on the poisoned encoder for multiple target downstream tasks simultaneously classify attacker-chosen, arbitrary clean inputs as attacker-chosen, arbitrary classes. We formulate our data poisoning attack as a bilevel optimization problem, whose solution is the set of poisoning inputs; and we propose a contrastive-learning-tailored method to approximately solve it. Our evaluation on multiple datasets shows that PoisonedEncoder achieves high attack success rates while maintaining the testing accuracy of the downstream classifiers built upon the poisoned encoder for non-attacker-chosen inputs. We also evaluate five defenses against PoisonedEncoder, including one pre-processing, three in-processing, and one post-processing defenses. Our results show that these defenses can decrease the attack success rate of PoisonedEncoder, but they also sacrifice the utility of the encoder or require a large clean pre-training dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源