论文标题
Impala:低延迟,沟通高效的私人深度学习推论
Impala: Low-Latency, Communication-Efficient Private Deep Learning Inference
论文作者
论文摘要
本文提出了Impala,这是一种新的加密协议,用于客户云设置中的私人推断。 Impala建立在最近的解决方案基础上,该解决方案结合了同构加密(HE)和安全多方计算(MPC)的互补优势。开发了一系列协议优化,以减少沟通和性能瓶颈。首先,我们通过引入代理服务器并开发低空钥匙切换技术,从客户端删除了MPC的压倒性高度通信成本。密钥切换可将客户端带宽减少多个数量级,但是代理和云之间的通信仍然过多。其次,我们开发了一个优化的乱码电路,该电路利用截断的秘密股份进行更快的评估和较少的代理云通信。最后,我们提出稀疏的他卷积以减少使用HE的计算瓶颈。与最先进的优化相比,这些优化为私人深度学习推断提供了超过3倍的带宽节省和4倍的加速。
This paper proposes Impala, a new cryptographic protocol for private inference in the client-cloud setting. Impala builds upon recent solutions that combine the complementary strengths of homomorphic encryption (HE) and secure multi-party computation (MPC). A series of protocol optimizations are developed to reduce both communication and performance bottlenecks. First, we remove MPC's overwhelmingly high communication cost from the client by introducing a proxy server and developing a low-overhead key switching technique. Key switching reduces the clients bandwidth by multiple orders of magnitude, however the communication between the proxy and cloud is still excessive. Second, to we develop an optimized garbled circuit that leverages truncated secret shares for faster evaluation and less proxy-cloud communication. Finally, we propose sparse HE convolution to reduce the computational bottleneck of using HE. Compared to the state-of-the-art, these optimizations provide a bandwidth savings of over 3X and speedup of 4X for private deep learning inference.