论文标题

利用变异域不变的用户嵌入部分重叠的跨域建议

Exploiting Variational Domain-Invariant User Embedding for Partially Overlapped Cross Domain Recommendation

论文作者

Liu, Weiming, Zheng, Xiaolin, Hu, Mengling, Chen, Chaochao

论文摘要

跨域推荐(CDR)已被广泛研究以利用不同的领域知识来解决推荐系统中的冷启动问题。大多数现有的CDR模型都假定源域和目标域共享相同的重叠用户集用于知识传输。但是,在实际CDR任务中,只有很少的用户同时激活源和目标域。在本文中,我们专注于部分重叠的跨域建议(POCDR)问题,即如何利用重叠和非重叠用户的信息来提高建议性能。现有的方法无法完全利用跨域的非重叠用户背后的有用知识,当大多数用户被证明是非经过拼写时,这会限制模型性能。为了解决这个问题,我们提出了一个具有变化域的嵌入式嵌入对齐模型(VDEA)模型的端到端双自动辅助模型,这是POCDR问题的跨域推荐框架,该框架利用了双重变异自动装码器与本地和全球全球嵌入式嵌入式启用污染物启用型启用式启动式用户的启用。 VDEA首先采用各种推理来捕获协作用户的偏好,然后利用Gromov-Wasserstein分销共同群集的最佳传输来聚集具有类似评级交互行为的用户。我们对Douban和Amazon数据集的实证研究表明,VDEA明显优于最先进的模型,尤其是在POCDR设置下。

Cross-Domain Recommendation (CDR) has been popularly studied to utilize different domain knowledge to solve the cold-start problem in recommender systems. Most of the existing CDR models assume that both the source and target domains share the same overlapped user set for knowledge transfer. However, only few proportion of users simultaneously activate on both the source and target domains in practical CDR tasks. In this paper, we focus on the Partially Overlapped Cross-Domain Recommendation (POCDR) problem, that is, how to leverage the information of both the overlapped and non-overlapped users to improve recommendation performance. Existing approaches cannot fully utilize the useful knowledge behind the non-overlapped users across domains, which limits the model performance when the majority of users turn out to be non-overlapped. To address this issue, we propose an end-to-end dual-autoencoder with Variational Domain-invariant Embedding Alignment (VDEA) model, a cross-domain recommendation framework for the POCDR problem, which utilizes dual variational autoencoders with both local and global embedding alignment for exploiting domain-invariant user embedding. VDEA first adopts variational inference to capture collaborative user preferences, and then utilizes Gromov-Wasserstein distribution co-clustering optimal transport to cluster the users with similar rating interaction behaviors. Our empirical studies on Douban and Amazon datasets demonstrate that VDEA significantly outperforms the state-of-the-art models, especially under the POCDR setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源