论文标题
一个微结构估计变压器,灵感来自扩散MRI的稀疏表示
A microstructure estimation Transformer inspired by sparse representation for diffusion MRI
论文作者
论文摘要
扩散磁共振成像(DMRI)是表征基于生物物理模型的组织微观结构的重要工具,这些模型是复杂且高度非线性的。通过优化技术解决微观结构很容易估计错误,需要在Q空间中进行密集采样。已经提出了基于深度学习的方法来克服这些局限性。在这项工作中,由变压器的出色性能激励,我们提出了一个基于学习的框架,即基于变压器的框架,即具有稀疏编码(METSC)的微观结构估计变压器,用于基于DMRI的微观结构估计,并使用下采样的Q-Space数据。为了利用变压器在大型培训数据要求中解决其局限性的同时,我们使用稀疏的编码技术向变压器中明确引入电感偏见 - 模型偏置以促进培训过程。因此,METSC由三个阶段组成,一个嵌入阶段,稀疏表示阶段和映射阶段。嵌入阶段是基于变压器的结构,该结构编码信号以确保有效表示体素。在稀疏表示阶段,通过求解稀疏的重建问题来构建字典,该问题突出了迭代的硬阈值(IHT)过程。映射阶段本质上是一个解码器,该解码器基于还学习了权重的归一化字典系数的加权总和,该解码器从第二阶段的输出中计算出微观结构参数。我们在两个DMRI模型上测试了我们的框架,其中包括静脉内的Q空间数据,包括静脉内不相干运动(IVIM)模型以及神经突方向分散和密度成像(NODDI)模型。在扫描时间内,提出的方法最多达到了11.25倍的加速度,并且超过了其他基于学习的方法。
Diffusion magnetic resonance imaging (dMRI) is an important tool in characterizing tissue microstructure based on biophysical models, which are complex and highly non-linear. Resolving microstructures with optimization techniques is prone to estimation errors and requires dense sampling in the q-space. Deep learning based approaches have been proposed to overcome these limitations. Motivated by the superior performance of the Transformer, in this work, we present a learning-based framework based on Transformer, namely, a Microstructure Estimation Transformer with Sparse Coding (METSC) for dMRI-based microstructure estimation with downsampled q-space data. To take advantage of the Transformer while addressing its limitation in large training data requirements, we explicitly introduce an inductive bias - model bias into the Transformer using a sparse coding technique to facilitate the training process. Thus, the METSC is composed with three stages, an embedding stage, a sparse representation stage, and a mapping stage. The embedding stage is a Transformer-based structure that encodes the signal to ensure the voxel is represented effectively. In the sparse representation stage, a dictionary is constructed by solving a sparse reconstruction problem that unfolds the Iterative Hard Thresholding (IHT) process. The mapping stage is essentially a decoder that computes the microstructural parameters from the output of the second stage, based on the weighted sum of normalized dictionary coefficients where the weights are also learned. We tested our framework on two dMRI models with downsampled q-space data, including the intravoxel incoherent motion (IVIM) model and the neurite orientation dispersion and density imaging (NODDI) model. The proposed method achieved up to 11.25 folds of acceleration in scan time and outperformed the other state-of-the-art learning-based methods.