论文标题

分布感知的图表表示电源系统的瞬态稳定性评估

Distribution-Aware Graph Representation Learning for Transient Stability Assessment of Power System

论文作者

Chen, Kaixuan, Liu, Shunyu, Yu, Na, Yan, Rong, Zhang, Quan, Song, Jie, Feng, Zunlei, Song, Mingli

论文摘要

实时瞬态稳定性评估(TSA)在电力系统的安全操作中起着至关重要的作用。尽管经典的数值集成方法,\ textit {i.e。}时域模拟(TDS)已被广泛用于行业实践中,但由于电力系统的高纬度复杂性,它不可避免地被困在高计算复杂性中。在这项工作中,提出了一种数据驱动的电力系统估计方法,以在TD到达模拟时间窗口结束之前快速预测功率系统的稳定性,这可以减少稳定性评估的平均模拟时间而不会损失准确性。由于电源系统的拓扑形式是图形结构的形式,因此基于图神经网络的表示学习自然适合学习电力系统的状态。通过观察电源系统总线节点上关键的主动能力和反应性功率的分布信息的激励,我们提出了一个分布感知的学习〜(dal)模块,以探索一个信息性的图表向量,以描述电源系统的状态。然后,将TSA重新定义为二进制分类任务,并且系统的稳定性直接从无需数值集成的结果图表示。最后,我们将方法应用于在线TSA任务。关于IEEE 39-BUS系统和波兰2383总线系统的案例研究证明了我们提出的方法的有效性。

The real-time transient stability assessment (TSA) plays a critical role in the secure operation of the power system. Although the classic numerical integration method, \textit{i.e.} time-domain simulation (TDS), has been widely used in industry practice, it is inevitably trapped in a high computational complexity due to the high latitude sophistication of the power system. In this work, a data-driven power system estimation method is proposed to quickly predict the stability of the power system before TDS reaches the end of simulating time windows, which can reduce the average simulation time of stability assessment without loss of accuracy. As the topology of the power system is in the form of graph structure, graph neural network based representation learning is naturally suitable for learning the status of the power system. Motivated by observing the distribution information of crucial active power and reactive power on the power system's bus nodes, we thus propose a distribution-aware learning~(DAL) module to explore an informative graph representation vector for describing the status of a power system. Then, TSA is re-defined as a binary classification task, and the stability of the system is determined directly from the resulting graph representation without numerical integration. Finally, we apply our method to the online TSA task. The case studies on the IEEE 39-bus system and Polish 2383-bus system demonstrate the effectiveness of our proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源