论文标题
异质弹性线的动态方法
A dynamic approach to heterogeneous elastic wires
论文作者
论文摘要
我们考虑具有固定长度和任意绕组数的封闭平面曲线,其弹性能量取决于额外的密度变量和自发曲率。与倾斜角一起工作,相关的$ l^2 $ - 级别流量是二阶的非本地准线性耦合抛物线系统。我们展示了本地适当的性能,解决方案的全球存在以及在弱规则性类别中的初始数据的流量完全收敛。
We consider closed planar curves with fixed length and arbitrary winding number whose elastic energy depends on an additional density variable and a spontaneous curvature. Working with the inclination angle, the associated $L^2$-gradient flow is a nonlocal quasilinear coupled parabolic system of second order. We show local well-posedness, global existence of solutions, and full convergence of the flow for initial data in a weak regularity class.