论文标题

附着在有限细胞收集的二项式理想

Binomial ideals attached to finite collections of cells

论文作者

Herzog, Jürgen, Hibi, Takayuki, Moradi, Somayeh

论文摘要

我们认为内部$ 2 $ -Minors $ i _ {\ Mathcal {p}} $的理想是有限的单元组$ \ Mathcal {p} $,我们称之为$ \ Mathcal {p} $的单元格理想。就$ \ Mathcal {p} $的单元格数而言,对未混合理想$ i _ {\ Mathcal {p}} $的高度的高度解释了一个很好的解释。此外,确定细胞理想的坐标环与分离的奇异性。

We consider the ideal of inner $2$-minors $I_{\mathcal{P}}$ of a finite set of cells $\mathcal{P}$, which we call the cell ideal of $\mathcal{P}$. A nice interpretation for the height of an unmixed ideal $I_{\mathcal{P}}$, in terms of the number of cells of $\mathcal{P}$ is given. Moreover, the coordinate rings of cell ideals with isolated singularities are determined.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源