论文标题
二维QCD中的空间纠缠:Renyi和Ryu-Takayanagi熵
Spatial entanglement in two dimensional QCD: Renyi and Ryu-Takayanagi entropies
论文作者
论文摘要
我们在真空状态下,使用相等的时间公式使用相等的时间公式在光前面的公式来得出了真空状态中复制分区函数的一般公式。结果用于分析二维QCD中相互作用的Dirac费物的空间纠缠。特别关注红外截止依赖性和计量规范的问题。 Renyi熵的单个间隔是由彩虹穿着的夸克传播器给出的,以订购$ {\ cal o}(n_c)$。证明对$ {\ cal o}(1)$的订单贡献显示出从偏离和质量壳中间t-matrix的贡献,没有对中央费用的贡献。然后将构造延伸到光线前的中间状态,并显示出探测党派PDF的矩,以实现大型轻偏分离。在真空和小间隔中,使用软墙ADS $ _3 $ _3 $的二维QCD模型。
We derive a general formula for the replica partition function in the vacuum state, for a large class of interacting theories with fermions, with or without gauge fields, using the equal-time formulation on the light front. The result is used to analyze the spatial entanglement of interacting Dirac fermions in two-dimensional QCD. A particular attention is paid to the issues of infrared cut-off dependence and gauge invariance. The Renyi entropy for a single interval, is given by the rainbow dressed quark propagator to order ${\cal O}(N_c)$. The contributions to order ${\cal O}(1)$, are shown to follow from the off-diagonal and off mass-shell mesonic T-matrix, with no contribution to the central charge. The construction is then extended to mesonic states on the light front, and shown to probe the moments of the partonic PDFs for large light-front separations. In the vacuum and for small and large intervals, the spatial entanglement entropy following from the Renyi entropy, is shown to be in agreement with the Ryu-Takayanagi geometrical entropy, using a soft-wall AdS$_3$ model of two-dimensional QCD.