论文标题
动力图和对称性图
Dynamical maps and symmetroids
论文作者
论文摘要
从与groupoid $ g $关联的规范symmetroid $ \ mathcal {s}(g)$开始,解决了量子力学方法中描述动态图的问题。在诱导了典型的Symmetroid $ \ Mathcal {s}(g)$上的HAAR度量之后,构建了关联的Von-Neumann groupoid代数。结果表明,左规范表示允许在groupoid $ g $的群体域代数上定义线性图,并且给定的功能子集与完全正面的地图相关。还提供了一些简单的例子。
Starting from the canonical symmetroid $\mathcal{S}(G)$ associated with a groupoid $G$, the issue of describing dynamical maps in the groupoidal approach to Quantum Mechanics is addressed. After inducing a Haar measure on the canonical symmetroid $\mathcal{S}(G)$, the associated von-Neumann groupoid algebra is constructed. It is shown that the left-regular representation allows to define linear maps on the groupoid-algebra of the groupoid $G$ and given subsets of functions are associated with completely positive maps. Some simple examples are also presented.